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I .  Phys. A Math. Gen. 28 (1995) 1271-1288. Printed in the UK 

End-to-end distance distributions and asymptotic 
behaviour of self-avoiding walks in tw0 and three 
dimensions 
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t Department of Physics, McGill University. Rutherford Building, 3600 University Street, 
Montreal, Quebec, Canada H3A 2T8 
3 National Research Council, Industrial Materials Institute, 75 De Monagne Boulevard, 
Bouchervilie, Quhbec, Canada 548 6Y4 

Received 14 June 1994 

Abstract. We use Monte Carlo methods to study the reduced moments and full end-to- 
end distance distributions of self-avoiding walks in WO and three dimensions. We find that 
the reduced moments scale with length via S, = A + B/"% with corrections to the 
scaling exponents that vary with the order of the moment. We also find that the complete 
end-to-end distance distributions are well described by a Redner-ies Cloizeaux (R~c) model 
q N ( X )  = C x@U exp(- (Kx) 'N)  I1.21, x being the rescaled length. We develop a method that 
allows reliable estimation of the exponents S,v and r~ f" the extrapolated reduced moments 
and use this method to extrapolate to chain lengths beyond those investigated here. We find 
that, in three dimensions, the optimal tN for N > I000 is smaller than the thenretically expected 
value t = 2.445. This implies that care must be taken in using the ~dc ansatz to interpm the 
behaviour of self-avoiding walks. even in the asymptotic limit. 

1. Introduction 

Self-avoiding walks, or SAWS, are well known in the literature [3] as models for polymer 
chains in a good solvent. This is because they are the simplest model that retains the 
essential physics of the problem: that a polymer is a flexible chain which cannot self- 
intersecr Because of the latter property analytic treatments are exceedingly difficult: we 
summarize the known results below. Due to these problems computer simulations play an 
important role in the field [4]. 

In this paper we study the full end-to-end distance distribution of SAWS in two and three 
dimensions, for several chain lengths N. We are interested in answering two questions: is 
this distribution well modelled by an ansatz due to Redner and des Cloizeaux [1,2], and 
how do the properties scale in the large-N limit? To provide a framework for this, we first 
present a review of the relevant theory of the scaling properties of polymers. 

The measurable quantities of SAWS are known to obey  some simple scaling laws [3]. 
As a function of chain length N the root-mean-square (RMS) end-to-end distance, RN, and 
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Table 1. Theoretical and numerical estimates of the exponents v. I and B .  in the large-N limit. 
The literature values for i and e were calculated via (5). (4) and (11) .  rspeaively. using the 
given vnlues of Y and y .  The results in 2~ m considered exact. 

the number of N-step SAWS, C N ,  (equivalent, in the absence of interactions, to the chain 
partition function 2,) obey 

R~ = - N~ (1) 
(2, ' ) C N  - MNNY-' (2) 

in the limit of large N .  The exponents y and v are believed to be universal for a given 
dimension, while f i ,  the connective constant, is characteristic of the lattice. Accepted 
numerical values are summarized in table 1. 

We focus on the chain end-to-end distance distribution ~ N ( T ) ,  where r joins the two 
ends of the chain. P N ( T )  is expected to have the scaling form [3] 

with z = r / R N .  This implies that the RMS end-to-end distance is the only relevant length 
scale. For free chains there are some elegant scaling arguments [3,5], confirmed by more 
rigorous approaches [2,6-8] for limiting cases of the asymtotic distribution q ( r ) .  Power- 
law behaviour q ( r )  - x' is predicted in the limit x + 0 (endpoints close together), with B 
given by 

When the endpoints are far apart, namely x >> 1, the distribution is expected to decay via 
q(z) - X I  exp(-[Kx]'), with exponents f and g given by 

(5 ) 
1 t = -  

I - v  

(6) - .  . . . .  1 - y +  vd -d/2 
I - U  

g =  

Recently Stepanow [28] suggested the existence of two additional length scales r* and r**, 
below and above which the scaling suggested by (4)-(6) should be violated. In particular, he 
predicts a different dependence, q(z) - exp(-x), for large distances between the endpoints. 
This conjecture has yet to be verified. 

The exponential term along with the exponent defined in (5) is often called the Fisher- 
Pincus law. Current best estimates for the exponents y and U (the 2D results are exact), 
and the corresponding values of 8, g and t are summarized in table 1. It turns out that 
the exponents 6 and g are nearly the same. In 3D the two agree to within the estimated 
errors, while in ZD the difference'is i ,  which is still quite small. This led Redner [ I ]  and 
des Cloizeaux [2] to conjecture that the function 

(7) 
should be a good approximation of the entire scaled end-to-end distance distribution, with 
t and B given by (5) and (4). In this Redner-des Cloizeaux (RdC) ansatz, K and C are not 

0 - (KxY q ( r ) = C x  e 
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additional parameters but are fixed by two conditions: (i) that the distribution is normalized 
(~,rd-’q(IzJ)dr _= 1) and (ii) that the second moment was chosen as the scaling length 
(equation (I)), namely (Jxd+ lq ( ls / )  dr 1). These conditions yield 

Previous simulation work largely supported this conjecture (see [9] for a summary of 
earlier results). However, until recently only the reduced moments 

8, = { r” ) / ( ( i - y ) )” /9  (10) 

could be measured to reasonable precision. These data appeared to indicate that 6 ,  - 1/N. 
Extrapolations based on this assumption yielded estimates for the reduced moments in good 
agreement with  those predicted by the RdC distribution using the theoretically expected 
exponents. These moments are calculated from the RdC ansatz via the formula [9, 
equation (23)] 

s,, = r ( [ e + d + p i / t )  r(te+dl/t)p/~--lr([e + d + q i / t ) - ‘ ’ / y .  (11) 

Recently two groups directly measured the distribution function, in three dimensions, 
and reported good agreement with the RdC ansatz [lo, 111. In particular, Eizenberg and 
Klafter [l l]  investigated chains of up to several thousand segments in length. From a 
comparison of the binned distributions they concluded that, to the precision of their results, 
the~asymptotic shape had been reached. However, they fit the data to the RdC ansatz (7) 
assuming that the exponent f is given by  (9, namely f = 2.445. As a result they did not 
report any model-independent quantities such as the reduced moments. 

The.next section contains a 
discussion of our Monte Carlo simulation methods. This is followed by our simulation 
results, where we determine both the reduced moments and the complete end-to-end 
distributions for free ZD and 3D chains of several lengths N. ~  we^ find that the reduced 
moments scale with chain length via A,, + BFq/NA”, with exponents that vary with 
the order of the moment. In particular, we find Apa < 1 and thus a slower approach 
to the asymptotic shape than previously expected. We also find that the full end-to-end 
distributions are weli modelled by the RdC ansatz (7) if we use chain-length-dependent 
exponents tN and B N .  To examine the behaviour of these exponents in the large-N limit 
we develop a method that takes advantage of our reliable extrapolations of the reduced 
moments a,,. This method accurately reproduces our direct fits to the full distributions, and 
is shown to be consistent with the measurements of other researchers. Most importantly we 
find that, in 3D, the extrapolated exponents t = 2.39 & 0.03, noticeably different from the 
theoretically expected value 2.445. We conclude with a discussion of the implications of 
these results. 

The remainder of the paper is organized as follows. 

2. Methods 

Simulation work on SAWS has followed two distinct approaches. The first method is to start 
from an initial site on a lattice and walk randomly to generate a fixed len@ walk. If the 
walk does not contain any forbidden self-intersections, it can be analysed, and the process 
repeated. The advantage is that the measurements are uncorrelated. The disadvantage is 
that the~probability of randomly generated walks being self-avoiding decreases exponentially 
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with chain length (attrition). More efficient are dimerization methods [12-141, which we 
use to obtain equilibrated initial configurations. The idea is to generate two SAWS of half 
the desired length and then to concatenate them. If this fails to yield a SAW both halves 
are discarded and another attempt is made. This algorithm is applied recursively down to a 
length where attrition is not a problem. 

The most common approach to the simulation of SAWS, and the one we primarily use, is 
to start with an initial configuration satisfying the boundary conditions and to make small 
changes to this configuration, following a set of well defined rules. The rules must be 
chosen so that the sequence is ergodic and that detailed balance is fulfilled. We use the 
pivot algorithm originally invented by La1 [U] to study SAWS on a cubic lattice. In this 
algorithm a MC step consists of choosing a point randomly along the chain and applying 
a symmetry operation of the lattice (reflection or rotation) to the rest of the chain. The 
result is accepted if no self-intersections occur. As pointed out by Madras and Sokal [ 161 
this leads to relatively short correlation times for global properties of the chain, such as 
the end-to-end distance. However, it is important to note that this is not the case for local 
quantities. We worked closely along the lines of [16], and similarly used dimerization to 
obtain fully equilibrated initial configurations. 

To check our programs we simulated short chains using both the pivot and the 
dimerization algorithm. From exact enumeration exact values for the mean square end- 
to-end distance are known [17,18], which were well reproduced by our simulations: 

Exact Dimerization Pivot 
N = 20(2D) 72.077 72.141(73) 72.139(64) 
N = 10(3D) 16.817 16.799(14) 16.807(14) 

We measured the end-to-end distance, the radius of gyration and the components of the 
latter parallel and perpendicular to the end-to-end vector. To ensure uncorrelared data we 
first did shorter runs to determine the relaxation times for the quantities under investigation. 
For free chains they were found to be smaller than seven MC steps for N = 10 and smaller 
than 30 MC steps for N = 240. In general, relaxation times were slightly longer in the 2D 
case. The distance between successive measurements was between three and five times the 
longest relaxation time, so that our data can be regarded as uncorrelated. In all cases the 
total number of data points obtained in the production runs with the pivot algorithm was 
5 x lo5 for chains of length N = 10,20,40,60,80,100,120,160,200 and 240. To obtain 
better statistics in the histograms for the end-to-end distance distribution the binning was 
additionally done at five intermediate time steps. 

For comparison we also used the dimerization algorithm to generate data for N = 80 
in two dimensions and for N = 60 and 120 in three dimensions. In these cases IO5 data 
points were obtained, which are uncorrelated due to the nature of the algorithm. 

3. Results 

We first present results for the reduced moments of the end-to-end distance distribution. 
These data can be directly compared to earlier work and are precise enough to allow for 
careful extrapolations to the N -+ 00 limit. We next consider the full distributions q(z) 
and examine how well they are described by the RdC ansatz. Lastly we develop a method 
to test and estimate the best-fit parameters of a model distribution from knowledge of the 
reduced moments. The advantage here is that the straightforward extrapolations of the 
reduced moments allow us to obtain reliable esimates for chains in the N -+ CO limit. 
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3.1. Reduced moments 

Measurements of the mean-square end-to-end distance (r’) and the reduced moments S,,, 
are summarized in tables 2 and 3. These compare well to earlier results (see [16-191 for 
(r’) results and [9] for a summary of-results on moments) while being significantly more 
precise. We note also that, where we have both pivot and dimerization data, our results 
agree to within the statistical error. This consistency is a useful check of our algorithms. 

Djordjevic et al [20] predicted the following chain-length-dependence of the mean- 
square end-to-end distance: 

As the 1/N term was found to be small in previous studies [20,21], only the N-A term 
was retained in obtaining the following estimates for U: um = 0.7507 & 0.0006 and 
!J~D = 0.592 zk 0.002. In 2D~the value vzo = 0.75 is believed exact [22]. In 3D the best 
analytical results are u g ~  = 0.588 [23] and 0.592 [%I, while the best series-extrapolation 
estimate is 0.592 f 0.002 [25]. The best estimates from simulation are 0.592 f 0.001 [ 161 
and 0.5909 f 0.0003 [ 111, obtained with walks of several thousand steps [16]. Our results 
(summarized in table 5) are in excellent agreement with these values. We estimated the 
leading correction-to-scaling exponent by setting v to the literature values quoted above, 

Table 2. Root-mean-square end- toad  distance and reduced moments for two-dimensional 
SAWS. The (d) indicates data generated by the dimerization algorithm. The (R) indicates reduced 
moments calculated from the fitted Redner-des Cloizeaux distributions (equation (15)) using 
the exponents given in tlble 4 (for the relevant chain length). The row labelled A gives the 
correction-to-scaiing exponent for the growth of (7’) (see equation (13)). Reduced moments 
wereextrapolated to N m viaA+B/NAN: theexponents A, and the extrapolated moments 
are given in the next two rows. The final two rows give the reduced moment predicted by the 
R ~ C  ansatz (equation (17)): RdC (I) using the theoretically expected exponents I md 6 taken 
from table I ,  while R ~ C  (2) uses our estimates of the exponents obtained by exmpolation of the 
ratios of reduced moments. These exponents are summaired in table 5. 

IO 
20 
40 

26.282(22) 
72. I39(64) 

200.09(18) 
364.59(34) 

559.1 l(S2) 
559.8(12) 
780.07(73) 

1023.14(95) 

1571.6(15) . .  
2196.6(21) 
2885.6(3 1) 

0.79(1) 

2.5735(44) 

1.11035(23) 
l.l2415(26) 
1.131 09(27) 
1.13298(28) 
I. 134 20.(22) 
1.13457(28) 
1. I35 ZO(62) 
1.134 83(28) 
1.135 Sl(28) 
1. I35 38(23) 
1. I35 84(283 
1.13600~28j 
1.136 30(32) 
I .  136 3003) 

1.041 (35) 
I .  I37 36(24) 
5.381(14) 
I .  I40607 
I; I37 44(28) 

1.35020(68) l.6821(14) 
1.39454(78) 1.7803(17) 
1.420 OZ(84) 1.8422( 19) 
1.427 5 I(86) 1.862 l(20) 
1.43 l56(74) 1.8716(16) 
1.43309(87) l.8752(20) 
1.4359(20) l.8812(45) 
1.43447(88) 1.8796(21) 
1.43824(88) 1.8891(21) 
1.43769(77) 1.8886(17) 
1.43987(89) 1.8943(21) 
1.440 04(89) 1.8953(21) 
1.441 6(10) 1.8987(25) 
1.441 30(78) 1.8974(18) 

0.897 (29) 0.794(22) 
1.447 5(10) 1.9195(25) 

1.45832 1.9393 
1.44872(60) 1.9196(38) 

2.1550(27) 2.1114(28) 
2.3427(33) 2.2962(34) 
2.4596(37) 2.4219(40) 
2.4966(38) 2.4659(42) 
2.5152(33) 2.4863(31) 
2.5221(39) 2.4920(44) 
2.5342(88) 2.5013(95) 
2.5260(40) 2.5037(45) 
2.5478(40) 2.5220(46) 
2.5463(35) 2.5234(33) 
2.5569(41) 2.5350(481 
2.5586(41) 2.5392(48) 
2.5650(47) 2.5470(55) 
2.5633(35) 2.5413(34) 

0.806(24) 0.706(24) 
2.6031(49) 2.6031(70) 

2.6448 2.6271 
2.6031(55) 2.592(1 I)  

3.8492(86) 
4.466(1 I) 
4.884(13) 
S.M5(14) 
5.095( 1 I) 
5.118(14) 
5.157(321 
s. iszi I 5 )  
5.217( IS) 
5.216(12) 
5.256(15) 
5.266(16) 
5.291(18) 
5.279(13) 

0.716(23) 
5.474(22) 

5.587 
5.440(27) 
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N 

Table 3. Root-mean-square end-toend dishnce and reduced moments for three-dimensional 
SAWS. The (d) indicates data generated by the dimerimtion algorithm. The (R) indicates reduced 
moments calculated f" the fitted Redner-dcs Cloizeaux distributions (equation (15)) using 
the exponents given in table 4 (for the relevant chain l e n e ) .  The row labelled A gives the 
correction-to-scaling exponent for the growth of (rz) (see equation (13)). Reduced moments 
wereextrapolated to N + m via A+BJNA,4:  the exponents App and the extrapolated moments 
are given in the next two rows. The final two rows give the reduced moment predicted by the 
Rdc usab. (equation (17)): RdC (I) using the thearetiwlly expected exponents f and 8 taken 
from table I ,  while R ~ C  (2) uses our estimates of the exponents obtained by extrapolation of the 
ratios of reduced moments These exponentS x e  summarized in table 5. 

100 
12O(d) 
120 
120(R) 
160 
200 
240 
24O(R) 
A 
APPB 
Extrap. 
2.974( I?) 
Rdc (1) 
pulc (2) 

16.807(14) 
38.766(42) 
38.714(36) 
88.841(85) 

l44.49(31) 
l44.29(14) 

203.04(20) 
265.27(26) 
329.89(72) . .  
329.34(32) 

463.71(46) 
605.24(60) 
750.27(75) 

OSO(5)  

3.186(19) 

1.105 83(2l) 
1.11952(28) 
1.1 I9 48(23) 
I.l2753(25) 
1.130 60(58) 
1.130 50(26) 
I.l3104(31) 
I. I32 52(26) 
1.13352(26) 
I. I34 48(60) 
I. I34 3'427) 
1. I34 22(33) 
1.135 51(27) 
1.136 26(27) 
1.136 6507) 
1. I36 75(34) 

0.721 (16) 
1.140 lO(30) 
7.177 (44) 
1.13850(44) 
1.14042(90) 

1.36788(73) 
1.42l0(10) 
1.420 62(87) 
1.45360(98) 
1.4682(23) 
1.4659(10) 
1.4676(12) 
1.4748(10) 
1.478 8(1 I )  
1.4822(24) 
1.4822(1 I )  
1.482 2( 13) 
1.488 2(1 I) 
I .490 7( 1 I) 
1.4940(1 I) 
1.493 6( 13) 

0.654(22) 
1.511 O(20) 

1.102.8(17) 
1.5 13 45(74) 

1.7732(19) 2.2841(33) 
1.9079(28) 2.5334(51) 
I .9053(25) 2.5296(42) 
1.9950(29) 2.6972(52) 
2.0378(68) 2.776(12) 
2.0268(30) 2.7586(55) 
~.0346(29j 2.7716(58) 
2.0513(31) 2.8052(57) 
2.0626(32) 2.8268(58) 
2.0704(72) 2.843(13) 
2.0717(32) 2.8445(59) 
2.0753(31) 2.8490163) 
2.0918(35) 2.8807(63) 
2.0960(34) 2.8907(62) 
21084(35) 2.9122(64) 
2.1065(33) 2.9091(66) 

0.592(20) 0.581(20) 
2.1645(61) 3.024(11) 

2.1345(45) 29617(90) 
2.1674(33) 3.0233(21) 

2.3527(45) 
2.6389(71) 
2.6277(57) 
2.8364(78) 
2.936(18) 
2.9048(83) . .  
2.9321(61) 
2.9602(85) 
2.9874(88) 
3.004(20) 
3,0077(90) 
3.0263(67) 
3.066(10) 
3.0684(98) 
3.103(10) 
3.0982(71) 

0.522(24) 
3.268(21) 

3.167( LO) 
3.249(16) 

4.402(12) 
5.328(21) 
5.303(17) 
5.993(23) 
6.328(56) 
6.242(25) 
6.316(23) 
6.438(26) 
6.53307) 
6.600(62) 
6.608(28) 
6.649061 
6.790(31) 
6.818(30) 
6.925(31) 
6.91 l(28) 

0.487(21) 
7.582(75) 

7.153(39) 
7.442(29) 

and fitting for A. We obtained the fits 

= ~ ~ . ~ ~ ( 0 . 7 7 o i ( g )  + O.Y(~)N-O.~~(~))  (13) 

= (1.15(2) - 0.175(7)N-0."''0)) (14) 
which gave excellent descriptions of the data. 

For the reduced moments we made an ansatz similar to (12), namely 

S,,(N) =apq + bnqN-AJ'q (15) 
and tried two different methods: (i) simple 1/N extrapolation (i.e. Ap4 1) as used 
previously [9] and (ii) a variable correction to scaling exponent Apq. Figure 1 shows our 
results for the reduced moment 882 in three dimensions, including also the results of Bishop 
and Clarke 191, and values calculated from the fits of Eizenberg and Klafter [ 1 I]. While 
the 1/N extrapolation was compatible with the older data of Bishop and Clarke [9], this 
function is clearly ruled out by our more precise measurements: the I/N fit simply does not 
follow the trend in the data. On the other hand, a model where we allowed the exponents 
Apq to depend on p q  gave excellent descriptions of our data. In tables 2 and 3 we have 
summarized both the best-fit exponents APq and the corresponding extrapolated moments. 
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x 

I I I I I I I I 

0 0.05 0.1 0.15 0.2 0.25 0.3 

I I I 1 I 

0 0.02 0.04 0.06 0.08 0.1 

N 
-A 

Figure 1. Measured reduced moments S a ,  for d = 3, as a function of chain length N. In (a) 
the data are plotted VMUS N-n.487, in (b) versus N-'. In both wses the best fit to our data is 
shown as a full line. The figures show data from three sources: our daln from table 3 (o), the 
earlier results of Bishop and Clarke [9] (0). and the reduced moments calculated from recent fits 
of Eizenberg and Klafler [ l l ]  (U() (A). The dotted curve shows our e s t i m e  for 682 calculated 
from fits to a R ~ C  model with f = 2.445. 

We note that there is a pattern in the correction exponents: they are largely independent 
of q, with values dropping in roughly equidistant steps with p .  

The ansatz (15) with correction to scaling exponents Apq is empirical, but was required 
by the fact that there was no single exponent that reasonably described all the moments. 
Our results can certainly be trusted as an excellent interpolation between our data points, 
however, the extrapolation to h i e  N is, in principle, open to systematic error. To check 
this point further we attempted to compare our results to other studies involving longer 
chains. 

In a recent publication Eizenberg and KIafter (EK) [ I l l  determined the end-to-end 
distance dishibutions of 3D walks on a cubic lattice in the range N = 608 to N = 7200. 
The distributions were fit to a RdC model, with t fixed at the theoretically expected value at 
large N (2.445) and with K and 0 as fit parameters. Unfortunately, they did not determine 
the reduced moments, so that we calculated the values included in figure 1 using the RdC 
expression (11) and their fit results [I 1, table VI. 

We find that their data do not support either scaling ansatz. Although the first three 
data points (smallest N )  appear in reasonable agreement with our extrapolation, for longer 
chains the moments bend over to a constant value, indicating that an asymptotic regime is 
reached at around N = 2000. We believe that this plateau is unphysical, and that it arises 
from the assumption t = 2.445, which is apparently incorrect even for these extremely long 
chains. We discuss this point more fully later in this section. 
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As a direct check of the RdC model we examined how well it reproduced our 
extrapolations for the reduced moments. Using the literature values for exponents listed in 
table 1 and (11) we obtained the reduced moments labelled RdC (1) in tables 2 and 3. There 
is reasonable qualitative agreement with the extrapolated values, with worst-case deviations 
of the order of 2%(5%) in ZD(3D). However, given the precision of our extrapolations these 
predictions are well outside the error estimates, suggesting that the RdC expression, using 
the accepted exponents, is only approximate, even in the N + 00 limit. 

3.2. End-to-end distance disfributiom 

In addition to measuring the moments we also measured q(z) directly, by binning the 
chain end-to-end distances into a histogram. The raw distributions are quite scattered due 
to fluctuations in the number of accessible lattice points around the physical volume of 
the bins. Properly smoothed curves are obtained by correcting for this [10,26,27] instead 
of using the raw bin volume. There is, however, some arbitrariness in the choice of the 
histogram widths and positions, along with associated systematic errors. We systematically 
varied the width and position of the bins under the condition that there were no empty bins. 
As a result we found that, even for bins of the width of the lattice constant, only the first 
one or two points of the resulting distributions were sensitive to this choice. For the first 
bm, however, the effect was so drastic that we excluded this point from subsequent analysis. 
In our opinion, for the lattice correction to give reliable results, the bins must contain more 
than just one or two points on the lattice. Our final choice were bins of width 1.5 starting 
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Figure 2. We show data for chain length 
N = 80 (0). N = 160 (+) and N = 240 (0). The full curve represenk the RAC distribution 
with the theoretically predicted exponents from table I .  The dotted curve is the result of Ktting 
these exponents to best match the N = 160 dab. 
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Figure 3. Scaled end-to-end distribution for 3D SAWS We show daw. for chain length N = 80 (0). 
N = 160 (C)  and N = 240 (U). The full curve represents the RdC distribution with the 
theoretically predicted exponents from table I. The dotted curve is the result of fitting these 
exponents to best match the N = 160 data. 

at 2.375 in ZD and bins of width 1.0 starting at 1.625 in 3D. 
Alternatively Dayantis and Palierne [IO] performed the binning after dividing the 

distances by N u ,  so that the number of bins is independent of the chain length N .  For 
N = 200 the first bins covered distances of 10.68, 1.14],[1.14, 1.591, . . . on the lattice, while 
for N = 600 [1.3,2.17], [2.17,3.04], . . . was used. This has the possible disadvantage that 
systematic errors for the closest bins may be obscured, as they are different for each chain 
length studied. In addition the authors made a significant investment of computer time to 
also obtain good statistics for the closest bins. In a log-log plot they observed that for 
r/N" < 0.1 their points seemed to follow a different power law. However, they did not 
take into account the systematic errors due to the discrete lattice which, in this region, can 
be much larger than the statistical ones. Depending on our choice of the histogram we 
observed similar effects. 

Figures 2 and 3 show superpositions of our scaled end-to-end vector distributions 
(averaged over angles) and demonstrate the validity of the scaling form (3). Around the 
maxima of the distributions we see small, but systematic, variations with the chain length. 
This is expected from finite-size considerations. The full curves in these figures show the 
conjecture of Redner and des Cloizeaux (7). using standard exponents (table 1). The overall 
appropriateness of the function is remarkable, although there are systematic differences 
largely due to the finite sizes of the chains. 

Our next step was to model the scaled distributions qm(z) and q3&) using the Redner- 
des Cloizeaux ansatz (7), but with t~ and ON as adjustable parameters. The purpose was 
two-fold first to test the ability of the RdC~expreSSion to describe data for finite-sized 



1280 R Everaers et a1 

Table 4. Effective exponents BN and t N  obtained by fining the complete end-to-end distance 
distribution to Redner-des ClOizeaux functions (epuation (8)). The final row give the mu11 of 
a simple 1/N extrapolation to N -t m. 

2D 3D 

N eN I N  ON tN 
, . . . . . . . . . . . . . . . . . . . . . . . .  , , . , , , "  ,.,, , , ,  

40 0.473(6) 4.5o(zj 0.17(1) 2.83(1) 
60 0.461(6) 4.39(2) O.ZZ(l) 2.71(1) 
80 0.459(6) 4.36(2) 0.22(1) 2.66(1) 

100 0.472(6) 4.30(2) 0.24(1) 2.62(1) 
120 0.474(6) 425(2) 0.24W 2.60(1) 
160 0.469(6) 424(2) 0.2ql) 2.57(1) 
200 0.474(6) 4.20(2) OW1) 2.54(1) 
240 0.471(6) 421(2) 0.24(1) 2.53(1) 
Extmap. 0.47(1) 4.10(2) 0.25(1) 2.45(1) 

TableS. Bestestimaresoftheexponentu, basedonthebehaviour of(r* ) (N) ,  andihemsymptotic 
exponents I and B for a RdC model. based on our estimates from the ratios of the reduced 
moments. 

Dimension U t e 
~ 

20 0.7500) 4.05(5) 0.49(1) 
30 0.592(2) 2.39(3) 0.29(4) 

systems and second to qualitatively examine the size-dependence of the exponents. 
We used an iterative routine which minimized the fitted xz for each chain length. The 

first point to note is that the quality of the fits as judged by the x 2  value is actually rather 
poor. Not surprisingly, the ansatz daes not ideally describe the data-stated otherwise, 
this means that our data are precise enough to show this. The question remains whether 
it provides a useful approximation. Judged from figures 2 and 3 the answer is certainly 
positive. The fit results for N = 160 are shown as broken lines in figures 2 and 3. We 
see that the fitted RdC distributions well describe the entire distribution. This is reassuring 
as the RdC ansatz was suggested by investigations of the limiting behaviour for small and 
large separations of the end points only. To be more quantitative, we used (1 1) to calculate 
reduced moments from the fitted RdC distributions and compared these values to the directly 
measured moments. A11 results for N > 100 agreed within the error bars with the direct 
measurements (tables 2 and 3), while for N < 100 the results were still very close. We note 
that for short chains the effect of working on a lattice is much stronger for the end-to-end 
distance distribution itself than for averaged quantities such as the moments. 

We have summarized the best-fit parameters tN and ON in table 5. They are 'in the 
right ballpark' and show the expected chain-length dependence. The values we find for t 
decrease only slowly towards the expected exponents. In particular, it suggests that for a 
description of medium sized chains (and presumably also of many experimental systems) 
using a RdC model, I may not be equal to the theoretically expected values in table 1. 

Finally we wish to know the behaviour for larger N .  Extrapolating these data is difficult, 
in part because the relative enors are large and because, for small systems, the data are 
not well modelled by the RdC ansatz. More importantly, there is no a priori reason why 
the parameters of this approximate model should show any simple N dependence. This is 
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unlike the case for the reduced moments, where a power-law dependence is expected from 
scaling arguments. Therefore as a very crude estimate we used a simple 1 / N  extrapolation, 
and have included the results at the bottom of table 4. Although these are close to the 
theoretical values in table 1 we emphasize that this procedure is not rigorous. In particular, 
the quoted margins of error account only for the statistical error. In the next section we 
present a more reliable method, based on the reduced moments. 

3.3. Estimating model distributions from reduced moments 

Because of the problems mentioned above we developed a method to estimate the best-fit 
parameters of a model distribution from the known reduced moments~of~the data. The 
advantage is that we believe we can reliably extrapolate the reduced moments. so that such 
a procedure allows us to reliably extend our investigation beyond the range of chain lengths 
studied by simulation. 

To illustrate this approach consider the following example: in an experiment random 
numbers are drawn from a RdC distribution characterized by exponents O,, and trNe. We 
now attempt to describe these data using another RdC model for which t is set to a fixed 
value tm,&l. The optimal value of the parameter Om,,&l is determined by fitting to the data 
via a x 2  minimization: 

Now suppose that we do not have the full distribution, but only its moments "y. 
Estimates, e&!, of the best-fit parameter can be obtained from the condition that a particular 
reduced moment of the data is reproduced correctly by the model, i.e. 

8: = 8pq (6;: I tmodel) (17) 

where the S,,, on the right-hand side is calculated from (11). (Note that, in this particular 
example, the left-hand side is similarly calculated since 8hy = S,,, (Ome. &). It is a simple 
numerical task to invert (17) to determine 0;;. 

In an experiment 8E will only be known up to some uPq. The staristical error of 0;: 
can be obtained by repeating the inversion procedure for a value 8E +uPq. The key point, 
however, are the systematic errors in the estimates obtained from the reduced moments, as 
we shall see below. 

The use of this approach is demonstrated in figure 4. Here we fixed Om, =~0.25 and 
tm& = 2.445 and show how the best estimate for 0:; depends on both the true exponent 
r,, (varied from 2.3-2.6) and the particular moment SUE we choose to invert. For u,,~ we 
took typical values from table 3, i.e. we assumed a precision in the moments similar to that 
of our simulations. The bands show the range in estimates for base on these assumed 
errors. Finally the full curve gives the ideal estimate for Omdel obtained by using (16) to fit 
to the complete end-to-end distribution. 

A comparison of the estimates 0;: to the optimal OmO&, shows that the method isquite 
successful; and that  the^ results from different moments provide a useful consistency check 
for the applicability of the chosen model. The following four properties are apparent: (i) 
The lowest reduced moment, 821. provides the best estimate, and for precisions typical of 
our simulations and extrapolations the optimal value is inside the error bars of the prediction 
for the range Itr.. - tmdel[ < 0.05. (ii) The better the model (tUue + tmodel) the better the 
estimates. (iii) For uncorrelated 6, the variation of 0;; with the order of the moment is a 

p? 
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- - -. 
Figure 4. Test example for the estimation of a fit to a model function. The n w  data were 
generated following a ndC dimbution with e,,, = 0.25 and variable trmC (the x-axis of the 
figure). These data were then modelled using a R ~ C  distibution with r d j  = 2.445 and 9,,,,*, 
as an adjustable parameter. The black line shows the optimal Omdc, as obtained from a fit to 
the full end-ta-end distribution. The shaded m m  show, from d z k  to light gray, estimates of 
Omdct based on inverting the three different reduced moments S21. S42, and Sn2. The width of 
the bands denotes the margins of error. 

measure of the quality of the model: if there is little variation the model is better. (iv) The 
statistical error of 8;; grows with the order of the reduced moment. 

In the following we apply this method to the reduced moments of our measured end-to- 
end distance distribution. Instead of the data listed in tables 2 and 3, however, we use the 
moments predicted by our numerical extrapolations. This offers two advantages: results can 
be obtained for arbitriuy N to the precision of our extrapolation, and systematic correlations 
between the different reduced moments for a given N should be smaller than in the orginal 
data. For the error estimates we varied the number of data points used in the extrapolations 
of the reduced moments. Thus we repeated the fits and omitted either the N = I O  or 
the N = 200 and 240 data points. This procedure reproduces the statistical errors given 
in tables 2 and 3 and is also sensitive to possible systematic errors in the extrapolations. 
Furthermore, it provides a simple way to obtain the correlations in the estimates of 8 and f. 
We will consider two RdC models: first the one we used in our own fits with 0 and f as 
adjustable parameters and secondly a model similar to that of Eizenberg and Klafter with f 
fixed to the theoretical value of 2.445. 

With both 0 and f as adjustable parameters we have to simultaneously invert (11) for 
two different reduced moments. Figures 5 and 6 show the resulting estimates for f and 
8 together with the results of our direct fits to the complete distributions (table 4). The 
two shaded areas represent the predictions based on the combinations Szt/842 and &1/&2. 

They have a typical width of kO.01 for t and f0.005 for 8 and are in excellen1 agreement 
with the direct fits and each other. Note, that where the regions overlap all three moments 
are reproduced correctly within the statistical error, which, as we pointed out above, is an 
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Figure 5. Effective exponents (U) 8 and (b)  1 3s functions of chain lenglh N ,  ford = 2. obtained 
by assuming the R K  distribution (7) and numerically inverting ( I  I )  simultaneously for two 
reduced moments. Shown are the combinations S 2 1 ( N ) / S a ( N )  (dark gray) and S~I(N) ISU(N) 
(framed light gray). The S,(N) were calculated using our fit ansatz (IS) with the exponents 
APq listed in table 2. The full circles indicate the results fmm directly fining the R ~ C  function 
to the end-to-end distribution (from table 4). 

indication of the appropriateness of the model. This gives a clue to the range of chain 
lengths over which the model is able to accurately represent the distributions. We also note 
that the plots o f f  and B as functions of 1/N are clearly nonlinear, underlining the difficulty 
of directly extrapolating exponents obtained by fitting to the complete distribution. 

It follows from figures 5 and 6 that we can expect the RdC model to work well for 
N > 50 in 2D and for N > 100 in 3D. Thus the analysis of the reduced moments confirms 
the impression conveyed from figures 2 and 3 and our findings from the direct fitting: that 
the overall behaviour of the end-to-end distance distributions can be modelled very well by 
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Figure 6. Effective exponents ( a )  0 and ( b )  1 as functions of chain length N.  far d = 3. obtained 
by assuming the R ~ C  distribution (7) and numerically inverting (11)  simultaneously for two 
reduced moments. Shawn ~ r e  the combinations 821 (N)I&z(N) (dark gray) and SzI(N)ISR2(N) 
(framed light gray). The S,(N) were calculated using our fit Jnsatz (15) with the exponents 
Apu listed in table 3. The dots indicate the results from directly filting the ndc function to the 
end-wend distribution (fmm table 4). 

the RdC ansatz with f~ and ON as chain length dependent parameters. Not surprisingly, the 
exact behaviour is more complicated. Indications were the poor xz values of the direct fits 
mentioned earlier and differing estimates of the fit parameters based on combinations of 
higher moments such as 84242/&34. 

Our estimates of the optimal parameters for the asymptotic distribution listed in table 5 
are based on the above analysis of the extrapolated moments. We subsequently used these 
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Figure 7. Effective exponents OEK as a function of chain length N in m, estimated from our 
reduced moment data (and their extrapolations using (IS) and the appropriate Apq fmm table 3). 
The OEK were obtained by assuming an Rdc distribution with I = 2.445 and numerically invetting 
(11) for the four reduced moments S Z I ( N ) .  S a ( N )  and S m ( N )  (from dark to light gray). The 
dots indicate the fit results of Eizenberg and Klafter [ I  I ,  table VI. 

values to calculate reduced moments for an RdC description of the asymptotic distribution. 
The results are given in the rows labelled ‘RdC(2)’ in tables 2 4 .  They are in excellent 
agreement with the directly extrapolated values. The quoted errors are small as we took 
into account correlations between the estimates o f f  and 8. 

The estimated asymptotic exponents are in good agreement with the theoretically 
expected values, although, with comparatively large error margins. In two dimensions the 
high value of t2D obtained by I f  N extrapolation is corrected to a value to izD = 4.05 hO.05, 
while 82D = 0.49 f 0.01 is only a little bit higher than expected. 

Things are more interesting in three dimensions. The value for 830 = 0.29 f 0.04 is 
in the expected range. However, we estimate f3D = 2.39 & 0.03, with our results further 
indicating that the theoretically expected value of 2.445 is appropriate only for chain lengths 
around N = 600. The reader may recall the problems we had with the reduced moments 
of longer chains calculated from the Eizenberg and Klafter fits (figure 1). Only the first 
data points for N = 608,800 and 992 were in agreement with our extrapolations, while for 
longer chains the data did show a crossover to a constant value. 

To demonstrate this point we now consider a RdC model with t fixed to the theoretical 
value 2.445, as was assumed by Eizenberg and Klafter [ l l ] .  The model has a single 
adjustable parameter, OEK, which we estimate by inverting (1  1) for different S,, of a given 
distributiont 

Figure 7 shows the results of this procedure. The shaded areas show our predictions for 
OEK(N) for N > 250, based on inverting four different reduced moments. The fit results 
of Eizenberg and Klafter [ l l ,  table VI are indicated by dots. They are quite scattered, 

t EK actually needed to fit K as a second panmeter, because they u e d  N” instead of the memured RN as the 
scaling length. In this case (8) is no longer valid. However. ( I  1) for the reduced moments still holds. allowing us 
to estimate BEK independent of K .  Note. that this means we are unable to account far their second fit parameter K 
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but all within the range of our predictions. From our most reliable estimate based on Szl 
we expect a very weak chain length dependence of e E K ( N ) .  However, rather than saying 
that the distributions have reached their asymtotic shape we interpret this as an artefact of 
the model chosen to represent the data. The problems with the model are obvious from a 
comparison of the estimates based on different aPq. As expected they all agree only near 
N = 600. The pattern is very similar to what we found in the test example (figure 4). 

To understand the Eizenberg and Klafter data points in figure 1 we calculated a 
hypothetical curve @ ( N )  for RdC distributions with t = 2.445 and our most reliable 
estimate for e E K ( N ) .  The results, shown as a dotted curve in figure 1, clearly mimic the 
behaviour of the EK data. Our line Sg:(N) crosses the straight line of our extrapolation 
around N = 600, ‘carrying along’ the data points of EK for longer chains. 

As a last point we investigated whether or not the quality of our data were of sufficient 
quality to resolve the predicted change in the power-law exponent for free chains from 0 
(equation (4)) for x << 1 to g (equation (6)) for x >> 1. In principle we could fit to selective 
regions of the data q(x) to extract the x-dependence of the exponents t and 8. However, 
the success of this depends on our ability to extract these quantities from noisy data. The 
problem is not only the reduced database, but also that (8) and (9) are no longer valid so 
that K and C become additional fit parameters. To check whether or not such an approach 
is feasable we simulated a binning process for events following a Redner-des Cloizeaux 
distribution. The results were then subjected to the fitting process in order to recover the 
parameters t and 0 used to generate the test data From this procedure we conclude that 
we cannot resolve the predicted change in the power-law exponent by fitting to our data, 
even if we were to significantly extend the precision of our results. Proper resolution of 
this question will require very high precision simulation studies of chains that are either 
stretched (by, for example, biased Monte Carlo sampling methods) or significantly longer 
that those studied here. This is even more true for the corrections to the limiting behaviour 
recently predicted by Stepanow [28] and mentioned in the introduction. 

4. Summary and discussion 

In this paper we used Monte Carlo methods to investigate SAWS on square and cubic 
lattices in two and three dimensions, respectively. We obtained precise measurements 
of both the reduced moments of the end-to-end distance distributions and of the complete 
distributions themselves for several different chain lengths. We demonstrated that a simple 
1 / N  extrapolation of the reduced moments to infinite chain length does not describe our 
results. Instead we find that our data is best modelled by the functional form (a + bN-*n*) 
with moment-dependent correction to scaling exponents APq < 1 (figure 1). In particular,the 
approach to the asymptotic distribution is found to be slower than expected. 

Our results confirm that the conjecture of Redner and des Cloizeaux (7) is a reasonable 
approximation for the measured end-to-end distance distribution. We find that an improved 
description is possible in the framework of a Redner-des Cloizeaux model by using chain- 
length-dependent effective exponents & and t N .  Such a model provides an excellent 
description of the end-to-end distance distributions (figures 2 and 3) provided the chains 
exceed a minimum length. 

To obtain these distributions we binned our data into histograms and corrected for 
fluctuations in the number of accessible lattice points per bin. Careful analysis showed that 
the method becomes unreliable for bins very close to the origin. We believe that this explains 
observations of Dayantis and Palierne [lo], who found deviations in their probabilities for 
r / N Y  c 0.1. 
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We studied the predicted behaviour in the large-N limit using our extrapolations for 
the reduced moments. These have the advantage of being both accurately measured and 
straightfonvard to extrapolate, unlike the effective exponents b’~ and fN themselves. We 
presented a method that allows us to extract estimates for the exponents, based on the 
reduced moments, and developed criteria for the reliability of this procedure. The resulting 
predicted behaviour in the large-N limit yielded some suprising results: while, in general, 
the asymptotic values for the effective exponents were found to be close to the theoretical 
predictions of Fisher et al and des Cloizeaux, we obtained f = 2.39 & 0.03 in three 
dimensions, which is quite different from the theoretical prediction t = 2.445. Note, 
that this is not in contradiction with the rigorous theoretical results, as they describe the 
behaviour of the asymptotic distributions in the limits of small and large x ,  whereas we aim 
to find the optimal parameters for an appoximate model describing the entire distribution. 

The result is nevertheless of practical importance as the value t = 2.445 was assumed to 
be correct by Eizenberg and Klafter [ 111 in a study similar to ours, but involving significantly 
longer chains. The consequence is that their fits and the reduced moments calculated from 
them appear to show an unphysical ‘plateau’ at large N. The fact that extrapolations from 
our data predict a similar plateau for a model with f = 2.445 is important evidence for the 
consistency of our methods. 

We emphasize, that our ansatz for the reduced moments is empirical, leaving open the 
possibility of systematic errors in the extrapolation. The occurence of moment-dependent 
correction to scaling exponents A, certainly comes as a surprise, and cannot be explained 
as a simple finite-chain-length effect. It is an interesting question whether arguments along 
the line of Stepanow’s work [28] could provide an explanation. 

In any case, a direct calculation of reduced moments from the Eizenberg and Klafter data 
would provide an important check of our analysis. Also the subject should be addressable 
by exact enumeration and series extrapolation techniques. Independent of these issues 
we believe that the estimation and extrapolation of the optimal parameters for a model 
distribution from quantities such as the reduced moments should have applications beyond 
the current context. 
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